Maximal Chains of Prime Ideals in Integral Extension Domains. I

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

I-prime ideals

In this paper, we introduce a new generalization of weakly prime ideals called $I$-prime. Suppose $R$ is a commutative ring with identity and $I$ a fixed ideal of $R$. A proper ideal $P$ of $R$ is $I$-prime if for $a, b in R$ with $ab in P-IP$ implies either $a in P$ or $b in P$. We give some characterizations of $I$-prime ideals and study some of its properties.  Moreover, we give conditions  ...

متن کامل

A note on maximal non-prime ideals

The rings considered in this article are commutative with identity $1neq 0$. By a proper ideal of a ring $R$,  we mean an ideal $I$ of $R$ such that $Ineq R$.  We say that a proper ideal $I$ of a ring $R$ is a  maximal non-prime ideal if $I$ is not a prime ideal of $R$ but any proper ideal $A$ of $R$ with $ Isubseteq A$ and $Ineq A$ is a prime ideal. That is, among all the proper ideals of $R$,...

متن کامل

Lifting Chains of Prime Ideals

We give an elementary proof that for a ring homomorphism A → B satisfying the property that every ideal in A is contracted from B the following property holds: for every chain of prime ideals p0 ⊂ . . . ⊂ pr in A there exists a chain of prime ideals q0 ⊂ . . . ⊂ qr in B such that qi ∩ A = pi. Mathematical Subject Classification (1991): 13B24. Let A and B be commutative rings and let φ : A → B b...

متن کامل

Prime Ideals and Integral Dependence

Let 9t and © be commutative rings such that © contains, and has the same identity element as, 9Î. If p and $ are prime ideals in SK and © respectively such that ^P\9t = p then we shall say that $ lies over, or contracts to, p. If over every prime ideal in dt there lies a prime ideal in ©, we shall say that the "lying-over" theorem holds for the pair of rings 9Î and ©. Suppose now that q and p a...

متن کامل

a note on maximal non-prime ideals

the rings considered in this article are commutative with identity $1neq 0$. by a proper ideal of a ring $r$,  we mean an ideal $i$ of $r$ such that $ineq r$.  we say that a proper ideal $i$ of a ring $r$ is a  maximal non-prime ideal if $i$ is not a prime ideal of $r$ but any proper ideal $a$ of $r$ with $ isubseteq a$ and $ineq a$ is a prime ideal. that is, among all the proper ideals of $r$,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Transactions of the American Mathematical Society

سال: 1976

ISSN: 0002-9947

DOI: 10.2307/1997418